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Abstract
We review the relation between the Casimir effect and geometry, emphasizing
deviations from the commonly used proximity force approximation (PFA). We
use, to this aim, the scattering formalism which is nowadays the best tool
available for accurate and reliable theory–experiment comparisons. We first
recall the main lines of this formalism when the mirrors can be considered to
obey specular reflection. We then discuss the more general case where non-
planar mirrors give rise to non-specular reflection with wavevectors and field
polarizations mixed. The general formalism has already been fruitfully used
for evaluating the effect of roughness on the Casimir force as well as the lateral
Casimir force or Casimir torque appearing between corrugated surfaces. In
this paper, we focus our attention to the case of the lateral force which should
make possible in the future an experimental demonstration of the nontrivial
(i.e. beyond PFA) interplay of the geometry and Casimir effect.

PACS numbers: 12.20.Ds, 03.70.+k, 42.50.−p, 85.85.+j

1. Introduction

The Casimir force [1] is a remarkable prediction of quantum field theory. As the most
easily accessible effect of vacuum fluctuations in the macroscopic world, it deserves careful
experimental tests [2–4]. After tests, which confirmed its existence and main properties [5],
experiments have been largely improved by technological achievements mastered over the
last decade [6–13]. Meanwhile, it was realized that the Casimir force, a dominant force at
micron or sub-micron distances, was clearly an important aspect of the study of micro- and
nano-oscillators (MEMS, NEMS) [14, 15].

These recent advances have been reviewed in a number of papers, for example [16–18], and
in a special issue of the New Journal of Physics [19]. In the following paragraphs, we emphasize
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arguments which plead for careful comparisons between experimental measurements and
theoretical predictions of the Casimir force [20].

1.1. Why testing the Casimir force?

A precise knowledge of the Casimir force is a key point for the tests of gravity at sub-millimeter
ranges [21–23]. A strong constraint has been obtained recently in the short range Cavendish-
like experiments [24]. Should a hypothetical new force have a Yukawa-like form, its strength
could not be larger than that of the gravity for Yukawa ranges larger than 56 µm.

Tests performed at shorter ranges essentially amount to comparisons with the theory of
Casimir force measurements. In other words, the looked for hypothetical new force would
correspond to an observable given by the difference Fexp − Fth between the experiment and
theory. This implies that the theoretical prediction Fth and the experimental measurement Fexp

have to be treated independently from each other and with the same accuracy and reliability
requirements.

To sum up the argument, the fact that the Casimir force experiments could be a window
on hypothetical deviations from standard physics forbids one to use the theory–experiment
comparison as an argument for proving (or disproving) some specific experiment or theoretical
model. In this context, it is important to use a theoretical formalism having the ability to take
into account the significant differences between the real experimental conditions and the ideal
situation studied by Casimir [4, 17, 20].

Casimir calculated the force between a pair of perfectly smooth, flat and parallel plates
in the limit of zero temperature and perfect reflection. He found expressions for the force
FCas and energy ECas which only depend on the distance L, the area A and two fundamental
constants, the speed of light c and the Planck constant h̄,

FCas = h̄cπ2A

240L4
= dECas

dL
, ECas = −h̄cπ2A

720L3
. (1)

This universality property of the Casimir expression is related to the saturation of the optical
response of the mirrors when they reflect 100% of the incoming light. However, no real mirror
can be considered as a perfect reflector at all field frequencies. The most precise experiments
are performed with metallic mirrors which are good reflectors only at frequencies smaller than
their plasma frequency. It follows that the Casimir force can obey the Casimir expression only
at distances L larger than the plasma wavelength λP.

As this effect of imperfect reflection is large, a precise knowledge of its frequency
dependence is essential for obtaining an accurate theoretical prediction of the Casimir force
[25]. This is also true for another correction to the ideal Casimir formula associated with
temperature effect. For discussions of this effect, we refer to discussions in [26, 27] and the
recent review [28]. We now focus our attention on the effects of geometry which are also
important in this context.

1.2. Why testing the effects of geometry?

It has been repeatedly stated over the years that the connection between the Casimir effect
and geometry should show a rich variety of sensitive dependences [30–32]. The basis for this
statement is the important fact that the Casimir forces cannot be additive, except in the specific
case of interaction between very dilute media.

Meanwhile, most experiments are performed between a plane and a sphere with the
Casimir force in this geometry calculated using the proximity force approximation [33], though
the latter amounts to a mere averaging over the distribution of local interplate distances. The
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PFA is expected to be valid in the plane–sphere geometry when the radius R is much larger
than the separation L [34, 35] and is used to analyze most of the present-day experiments.
Results going beyond this approximation have been obtained recently [36–45]. Some of these
theoretical models involve scalar fields reflected on perfect boundary conditions and can hardly
be compared with experiments, but those dealing with electromagnetic fields have now to be
used for comparisons with experimental results obtained in the plane–sphere geometry.

As the effects of geometry on the Casimir force open access to a rich and stimulating
physics, it is also important to explore this domain through new dedicated experiments. Only
a few experiments have been designed to this aim which use a specific geometry with periodic
corrugations imprinted on metallic surfaces. In this case, the Casimir force contains a lateral
component since the lateral translation symmetry is broken [46]. The lateral Casimir force is
smaller than the normal one, but has nevertheless already been measured in experiments [47].
The results have been found to agree within a bar of ±24% with PFA calculations.

Calculations beyond the PFA have also been performed by using more elaborate theoretical
methods. The lateral force has been evaluated for perfectly reflecting mirrors using a
path-integral formulation in a perturbative [48] or non-perturbative approach [49]. As the
experiments are performed at distances L not much larger than the plasma wavelength λP, it
is essential to account for the optical properties of the metals [25, 26]. Below we will present
results obtained for corrugated metallic mirrors in the limiting case where the corrugation can
be treated as a small perturbation [50–52]. As expected, the PFA is found to be valid when the
corrugated surfaces appear as nearly plane to the vacuum fields involved in the calculation of
the Casimir energy, that is to say when the corrugation wavelength λC is larger than the other
relevant length scales.

1.3. Outline of the paper

We review below the theory of the Casimir effect within scattering theory. We will in
particular present the formula giving the (QED) theoretical prediction for the Casimir force
between scatterers placed in vacuum, or more generally at thermodynamical equilibrium with
T �= 0. This formula has been written years ago for plane and parallel mirrors showing
specular reflection [53]. It has been used to discuss in a qualitative manner the effect of
reflection properties of the mirrors on the Casimir force [17, 25, 26, 54]. Its applicability
domain has been enlarged up to the point where it is now capable of dealing with non-planar
geometries with non-specular reflection mixing field polarizations and transverse wavevectors
[20]. We will recall below the application of this method to the calculation of the lateral
Casimir force between corrugated plates [51, 52].

Note that similar discussions have been devoted to the discussion of the effect of surface
roughness on the Casimir force. This description is commonly given within the PFA [55] which
cannot remain valid for arbitrary roughness wavelengths [56]. As the effect of roughness is
only a small correction of the Casimir force, one can however hardly expect quantitative
theory–experiment comparisons in this case. This is why we will not discuss it below. Other
applications have also been presented for the Casimir torque appearing between misaligned
corrugation plates [57] and for the Casimir–Polder force between an atom or a cloud of atoms
(BEC) and a corrugated metallic plate [58].

2. Specular scattering

We first consider the geometry with perfectly plane and parallel mirrors aligned along the
directions x and y. As the configuration obeys a symmetry with respect to time translation as
well as lateral space translations (along the directions x and y), the frequency ω, transverse
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vector k ≡ (kx, ky) and polarization p = TE, TM are preserved by the scattering processes
which couple field modes having the same values for the preserved quantum numbers but a
different sign for the longitudinal wavevector kz. The two mirrors j = 1, 2 are described
by the reflection and transmission amplitudes which depend on frequency, incidence angle
θ = arccos (ckz/ω) and polarization p.

2.1. Scattering formulae

The important result is that the Casimir force can be written in terms of the reflection amplitudes
rj of the two mirrors, as seen from inside the Fabry-Perot cavity formed by the two mirrors
[53]. In order to write this relation, we introduce two functions which characterize the optical
response of the cavity to an input field (dependences with respect to ω, k and p are omitted):

f = r1r2 e2ikzL

1 − r1r2 e2ikzL
, g = 1 + f + f ∗ = 1 − |r1r2 e2ikzL|2

|1 − r1r2 e2ikzL|2 , (2)

where f is the closed-loop function describing the cavity (L is the length of the cavity) and,
therefore, obeys analyticity properties. Meanwhile, g is the ratio of the energy inside the
cavity to the energy outside the cavity, that is also the ratio of the spectral density inside the
cavity to the spectral density outside the cavity for a given mode. Its expression is valid for
lossy as well as lossless mirrors as was demonstrated with an increasing range of validity in
[53, 54, 59]. For lossy mirrors, it accounts for the additional fluctuations accompanying losses
inside the mirrors.

Assuming thermal equilibrium for the whole ‘cavity + fields’ system, we obtain the
radiation pressure exerted by the field fluctuations upon the mirrors. This leads to the following
expression of the Casimir force as the sum over all field modes m of this radiation pressure (m
gathers the parameters ω, k and p):

F =
∑
m

(
1

2
+ n

)
h̄ω cos2 θ{1 − g}

= −
∑
m

(
1

2
+ n

)
h̄ω cos2 θ{f + f ∗}. (3)

Here,
(

1
2 + n

)
h̄ω is the mean energy per mode at temperature T with n the mean number of

photons per mode (n = 0 at T = 0, n > 0 otherwise):

1

2
+ n = 1

2
coth

h̄ω

2kBT
. (4)

Meanwhile, cos2 θ is a projection factor appearing in the translation from energy density to
pressure; finally, {1 − g} represents the difference between pressures on the outer and inner
sides of the mirrors, respectively. Equation (3) contains the contribution of ordinary modes
freely propagating outside and inside the cavity (ω > c|k|), which merely reflects the intuitive
picture of a radiation pressure of field fluctuations on the mirrors [53]. But it also includes
the contribution of evanescent waves (ω < c|k|) which propagate inside the mirrors with an
incidence angle larger than the limit angle [54]. The properties of the latter are described
through an analytical continuation of those of ordinary waves, using the well-defined analytic
behavior of the function f .

Equation (3) can be equivalently written as a differential with respect to length of a free
energy:

F = ∂F
∂L

, F = h̄c

i

∑
m

(
1

2
+ n

)
ln

1 − r1r2 e2ikzL

1 − r∗
1 r∗

2 e−2ikzL
. (5)
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Using analyticity properties, as well as high-frequency transparency to neglect the contribution
of large frequencies, both equations (3) and (5) can be transformed into integral over imaginary
frequencies ω = iξ . We will write below more general forms of these relations, valid also for
non-specular scattering.

2.2. The Lifshitz formula as a particular case

Equations (3) and (5) reproduce the Casimir formulae (1) in the limits of perfect reflection
r1r2 → 1 and null temperature T → 0. They are regular for any optical model of mirrors
obeying causality and high-frequency transparency properties, without needing any further
regularization. They can thus be used for calculating the Casimir force between arbitrary
mirrors, as soon as the reflection amplitudes are specified. These amplitudes are commonly
deduced from the microscopic models of mirrors, the simplest of which is the well-known
Lifshitz model [60].

This model corresponds to plates having a large optical thickness, and characterized by
a local dielectric function ε (ω). The reflection amplitudes are thus given by the Fresnel law
written at the vacuum–bulk interface:

rTE = kz − Kz

kz + Kz

, rTM = Kz − εkz

Kz + εkz

,

ckz =
√

ω2 − c2k2
z , cKz =

√
εω2 − c2k2

z .

(6)

Here, kz and Kz correspond to the longitudinal wavevector in vacuum and in the bulk,
respectively. Taken with equations (3) and (5) (possibly translated to the domain of imaginary
frequencies), relations (6) reproduce the Lifshitz expression for the Casimir force [60]. The
latter tend to the original Casimir expression in the limit ε → ∞ which produces perfectly
reflecting mirrors [61].

At this stage, several remarks are worth being emphasized:

• The expression of the force was not written in this manner by Lifshitz. To the best of our
knowledge, Kats [62] was the first to note that the Lifshitz expression could be written in
terms of the reflection amplitudes.

• The Lifshitz expression is valid for the cases for which it was derived. Its extension to
more general situations can only be considered as valid after a careful examination of the
derivation.

• In the most general case, the optical response of the bulk material cannot be described by
a local dielectric function. In this case, the description in terms of reflection amplitudes,
which necessarily differ from specific expressions (6), is still valid [20, 53, 54].

2.3. Description of real mirrors

In order to obtain a quantitative description of the effect of finite conductivity, we may in a first
approach use expressions (6) with the dielectric function corresponding to the plasma model
(ωP the plasma frequency):

ε (ω) = 1 − ω2
P

ω2
, ε (iξ) = 1 +

ω2
P

ξ 2
. (7)

When performing these calculations, one recovers as expected the Casimir formula at large
distances (F → FCas when L � λP). At distances smaller than λP in contrast, a significant
reduction is obtained with the asymptotic law of variation read as

L � λP → F

FCas
� 1.193

L

λP
. (8)
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This can be understood as the result of the Coulomb interaction of surface plasmons at the
two vacuum/metal interfaces [63, 64]. The generalization of this idea at arbitrary distances
is more subtle since it involves a full electromagnetic treatment of the plasmon as well as
ordinary photon modes [65].

The plasma model cannot provide a fully satisfactory description of the optical response of
metals. A more realistic representation of the metals includes the description of the relaxation
processes of conduction electrons as well as that of interband transitions. The reader is
referred to [25] for a more detailed discussion3. The values of the complex index of refraction
for different metals, measured through different optical techniques, are tabulated in several
handbooks [66]. Optical data may vary from one reference to another, leading to different
estimations of the Casimir force [67]. Let us emphasize that the problem here is neither due
to a lack of precision of the calculations nor to inaccuracies in experiments. The problem
is that the calculations and experiments may consider physical samples with different optical
properties. This difficulty should be solved by measuring the reflection amplitudes of the
mirrors used in the experiment and inserting these informations in the formula giving the
predicted Casimir force.

2.4. Temperature correction

The Casimir force between metallic mirrors at nonzero temperature has given rise to
contradictory claims which have raised doubts about the theoretical expression of the force.
We do not repeat here the discussions which have been devoted to the topic in [20, 26, 27] (see
also the recent review [28] and contributions on the topic in the present volume [29]). We only
want to stress again that the running controversy can only be solved through an improvement
of the knowledge of the reflection amplitudes, particularly at low frequencies. As already
discussed, the best manner to do that is to measure these amplitudes on the mirrors used in the
experiment.

3. Non-specular scattering

We will now present a more general formalism where the Casimir force and energy are
calculated between two objects with non-planar shapes. This formalism is an extension
of what has already been presented with the scattering amplitudes now accounting for non-
specular reflection. The non-specular case is of course the generic one while specular reflection
can only be an idealization. After an introduction to this general formalism, we will discuss
applications to the lateral force between corrugated mirrors and we will in particular emphasize
deviations from the PFA.

3.1. General scattering formulae

In order to introduce the general formalism, let us first rewrite expression (5) of the Casimir
free energy between two parallel plane plates as the sum over modes

F = ∂F
∂L

, F = ih̄
∫ ∞

0

dω

2π

(
1

2
+ n

)
ln detS,

ln detS = Tr lnS = Tr ln
d∗

d
, d ≡ 1 − r1r2 e2ikzL.

(9)

These equations correspond to the following interpretation [53]: the force F is the change of
the free energy F when the scatterers are being displaced. The free energy F is described by a

3 Further details on optical data are available; please contact astrid.lambrecht@spectro.jussieu.fr.
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storage of vacuum energy due to the scattering process, and is written in terms of the S-matrix
associated with the cavity. As the scattering on stationary objects preserves frequency, this
S-matrix is defined at a given value of ω. As the surfaces are plane and parallel, the scattering
also preserves the transverse wavevector k and polarization p (it only couples modes with
opposite values of the longitudinal wavevector). The symbol Tr in (9) refers to a trace over the
modes corresponding to different values of k and p at a fixed frequency. The quantity ln detS
can be written in terms of the matrix d which is diagonal on the basis of plane waves, so that
equation (9) is effectively equivalent to (5). This ‘scattering formula’ or ‘phaseshift formula’
[53] can equivalently be written as a sum over imaginary frequencies ω = iξ :

F = h̄

∫ ∞

0

dξ

2π
(1 + 2n) ln det d,

d ≡ 1 − r1r2 exp(−2
√

k2 + ξ 2L),

(10)

where d is the denominator of the loop function (2) here written for imaginary frequencies.
As a consequence of this interpretation, it is clear that a more general formula of the

Casimir energy can be written in a similar manner for the case of stationary but non-specular
scattering [50, 20]. It can be expressed either as a sum over real frequencies, including ordinary
and evanescent waves, or as a sum over imaginary frequencies:

F = h̄

∫ ∞

0

dξ

2π
(1 + 2n) ln detD, (11)

D ≡ 1 − R1 exp(−KL)R2 exp(−KL).

The matrices D,R1 and R2 are no longer diagonal on the basis of plane waves since they
describe non-specular reflection on the two mirrors. The propagation factors contained in K
remain diagonal on the basis of plane waves with their diagonal values written as in (10).
Clearly, expression (11) does not depend on the choice of this specific basis. Note that the
matrices in (11) do not commute with each other. In particular, the two propagation matrices
exp(−KL) appearing in D can be moved through circular permutations in the product but not
adjoined to each other.

This equation takes a simpler form at the limit of null temperature (note the change of
notation from the free energy F to the ordinary energy E):

F = dE

dL
, E = h̄

∫ ∞

0

dξ

2π
ln detD. (12)

Formula (12) has already been used to evaluate the effect of roughness [50] or corrugation
[51, 52] of the mirrors. To this aim, it was dealt within a perturbative manner at second
order in the roughness or corrugation amplitudes, recalled in the forthcoming paragraphs.
It is clear that it has a larger domain of application, not limited to the perturbative regime,
as soon as some technique is available for exploiting its general form for specific problems
of physical interest. Such a technique has been developed recently by Emig, Graham, Jaffe
and Kardar [42], through a multipole expansion well adapted to the treatment of ‘compact’
objects, typically two spheres not too close to each other. The general formula used as the
starting point of the expansion is equivalent to our formula (12) with D given in (11). In
particular, the T-matrices in [42] are identified as the non-specular reflection matrices R of
[50]. Meanwhile, the U-matrices in [42] correspond to the propagation matrices exp(−KL)

of [50], the difference in their explicit expression arising from the fact that they are written on
a different basis.
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3.2. Scattering formula for the lateral Casimir force

We now come to the discussion of the effect of non-planar geometries and particularly of the
deviation from the PFA which could be seen in experiments. As already stated, we thus focus
our attention on the lateral Casimir force appearing between corrugated plates. In this case,
the deviation of PFA should indeed be visible as a factor in front of the whole effect. This
situation is clearly more favorable to the theory/experiment comparison than that met when
studying the roughness correction to the normal Casimir force, with this correction being only
a small part of the force [50]. Stated differently, the lateral Casimir force could allow for a
new test of a prediction of Quantum ElectroDynamics, namely the dependence with respect
to corrugation wavevector discussed below [51, 52].

Here, we consider two parallel plane mirrors, M1 and M2, with corrugated surfaces
described by uniaxial sinusoidal profiles (see figure 1 in [52]):

h1 = a1 cos(kCx), h2 = a2 cos (kC(x − b)) , kC = 2π

λC
. (13)

The functions h1(x, y) and h2(x, y) measure the local height with respect to the mean planes
z1 = 0 and z2 = L. They are defined so that h1 and h2 have null spatial averages, L thus
representing the mean distance between the two surfaces; h1 and h2 are both counted as
positive when they correspond to separation decreases; λC is the corrugation wavelength, kC

is the corresponding wavevector, and b is the spatial mismatch between the corrugation crests.
In the following, we will suppose that the corrugation amplitudes are smaller than the

other length scales, namely the corrugation wavelength λC, the plasma wavelength λP and the
interplate distance L:

a1, a2 � λC, λP, L. (14)

Using the PFA, the Casimir energy is thus obtained by adding the contributions of various
surface elements calculated for distributed local distances. Using condition (14) and expanding
up to second order in the corrugation amplitudes, we find the lowest-order correction to energy
within the PFA,

δEPFA = 1

2

∂2EPP

∂L2

(
a2

1 + a2
2

2
+ a1a2 cos(kCb)

)
, (15)

with EPP the energy calculated between two parallel plane plates. As the energy corrections
proportional to a2

1 and a2
2 do not depend on the lateral mismatch b, they do not contribute to

the lateral force which is simply read as

F lat
PFA = −∂δEPFA

∂b
= 1

2

∂2EPP

∂L2
kCa1a2 sin(kCb). (16)

We will now write the scattering formula for the lateral Casimir force, in a perturbative
expansion with respect to the corrugation amplitudes. As in (16), the correction of the Casimir
energy will arise at second order in the corrugation amplitudes, with crossed terms of the form
a1a2 which have the ability to induce lateral forces. The main difference with (15), (16) will
be the appearance of a more complicated dependence in the corrugation wavevector kC.

For this purpose, we expand the non-specular reflection matrixRj as the sumR(0)
j +δRj of

a zeroth-order contribution identified as the specular reflection and of a first-order contribution
induced by the reflection on the corrugation [50]. The lowest order modification of the Casimir
energy (12) able to produce a lateral force (cross terms ∝ a1a2) is thus read as

δE = −h̄

∫ ∞

0

dξ

2π
Tr

(
exp(−KL)

D(0)
δR1

exp(−KL)

D(0)
δR2

)
. (17)

D(0) is the matrix D evaluated at zeroth order in the corrugation. It is diagonal on the basis of
plane waves and therefore commutes with K.
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3.3. Explicit results for the plasma model

In order to obtain explicit expressions, it is then necessary to use some microscopic model. To
this aim, we study the case of bulk metallic plates described by the plasma dielectric function.
The non-specular reflection amplitudes are then calculated in the Rayleigh approximation
using techniques which have been developed for treating scattering on rough plates
[68, 69]. We want to emphasize that this microscopic model allows one to calculate the
lateral Casimir force for arbitrary relative values of the three parameters λP, λC and L, the
corrugation amplitudes remaining the smallest length scale for perturbation theory to hold
(see conditions (14)).

This calculation leads to the following expression of the lateral Casimir force:

F lat = −∂δE

∂b
, δE = A

2
GC(kC)a1a2 cos(kCb), (18)

with the function GC(kC) calculated in [52]. It is worth emphasizing that the PFA is recovered
in equation (18) as the limiting case kC → 0, that is also for long corrugation wavelengths.
This follows from a properly formulated ‘proximity force theorem’

lim
kC→0

AGC(kC) = d2EPP

dL2
. (19)

This property is ensured, for any model of the material medium, by the fact that GC(kC → 0)

is given by the specular limit of non-specular reflection amplitudes [52]. This theorem has to
be distinguished from the approximation (PFA) which consists in an identification between
GC(kC) and its limiting value GC(0). For arbitrary values of kC, the deviation from the PFA
is described by the ratio

ρC(kC) = GC(kC)

GC(0)
. (20)

The variation of this ratio ρC with the various parameters has been described in a detailed
manner in [51, 52]. Some curves are drawn as examples in figure 1 of [51] with λP =
137 nm chosen to fit the case of gold covered plates. An important feature is that ρC is smaller
than unity as soon as kC significantly deviates from 0. For large values of kC, it even decays
exponentially to zero.

4. Concluding remarks

We have studied the lateral Casimir force between two corrugated metallic plates. To this
aim, we have used a general scattering formula in a perturbative regime corresponding to
corrugation amplitudes smaller than the other length scales L, λC and λP. The result describes
a variety of situations where these three scales have arbitrary relative values. The results known
for perfect mirrors [49] are recovered when λP � λC, L. The proximity force approximation
(PFA) is recovered at the limit of smooth plates L, λP � λC. A third limiting case has been
studied in [52] which corresponds to the opposite case of rugged corrugations λC � L, λP.
This case corresponds to evaluations far beyond the PFA regime and is particularly interesting
as it constitutes a nontrivial interplay between geometry and the Casimir effect [32]. It is also
of great interest for applications to surfaces with structurations at the nanometric scale.

The numerical figures presented in [51, 52] suggest that nontrivial effects of geometry, i.e.
effects beyond the PFA, could be observed with dedicated lateral force experiments. Existing
experiments by Chen et al [47] have used large corrugation amplitudes a1, a2 in order to
increase the magnitude of the force. As they do not meet the conditions of validity of our
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perturbative expansion, it is not possible to compare directly the experimental and theoretical
results. Chen et al have found their measurements to agree with the PFA to within ±24%.
Considering smaller amplitudes a1, a2 with the same values for the parameters L, λC and λP,
we have obtained a deviation from the PFA of the order of 40%, which means that these
parameters do not belong to the domain of validity of the PFA, at least at the perturbative limit.

More work is clearly needed in order to settle this potential concern in the theory–
experiment comparison [52, 70, 71]. Progress on this question could be achieved by calculating
higher order corrections for metallic mirrors beyond the PFA. These corrections would affect
the theoretical predictions, but it seems unlikely that they would compensate exactly the
deviation from PFA which has been obtained in the perturbative theory. Progress could
alternatively come from experiments with smaller corrugation amplitudes, allowing for a
direct comparison with the perturbative theory. A better experimental accuracy would also
be very valuable, allowing one to distinguish more easily between alternative predictions.
Of course, this program raises serious experimental challenges, given the minuteness of the
lateral force effect. But the reward would be remarkable with potentially the first experimental
demonstration of a nontrivial interplay between geometry and the Casimir effect.
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